Three-Dimensional Map of Nitrate Concentration in Groundwater in Wisconsin With Spatially Adjusted Random Forests

Xindi Lin[‡], Christopher Zahasky[†], Hyunseung Kang[‡]

†Department of Geoscience, University of Wisconsin--Madison, ‡ Department of Statistics, University of Wisconsin--Madison

Overview

- Nitrate remains the most widespread groundwater contaminant in Wisconsin.
- Millions of dollars are spent to meet the 10mg/L public health standard.
- The project aims to create a three-dimensional map of nitrate concentration across Wisconsin.
- Our approach involves:
 - Collect publicly available groundwater nitrate measurements from 2014 to 2024 in Wisconsin.
 - Collect environmental predictive variables that are hypothesized to predict nitrate contamination, including land use, precipitation, soil drainage, concentrated animal feeding operations (CAFOs), static water levels, and well depth.
 - Use Random Forest to assess the influence of the predictive variables on nitrate contamination and apply kriging to capture the spatial dependency of nitrate levels in groundwater.

Model Validation

- Use 80% of the data (Total:76604 measurement) as the **training set**, and 20% of the data (Total:19151 measurement) as the **validation set**.
- Root median squared test prediction error: 0.515 mg/L.

Figure: Prediction error on training set v.s. test set.

Figure: Map of test prediction errors.

Data Visualization

Nitrate

- Nitrate measurements^[1] taken between 2014 and 2024 in Wisconsin.
- Data is measured and integrated based on the Public Land Survey System (PLSS) grid system in Wisconsin.

• Well depth^[1] in Wisconsin wells.

O Well Depth = Casing Depth +

Precipitation

- **Daily average precipitation**^[3] at each site from 2014 to 2024 (Total: 18,880 sites)
- **Bilinear interpolation** of the average precipitation.

Soil Drainage

• **Seven levels** of soil drainage^[4].

Land Cover

Well Depth

- Land cover^[2] in Wisconsin.
- Original categories are combined into Grass, Forest, Corn, Soybeans, and Developed urban areas.

CAFO

- Concentrated animal feeding operations^[5]
- CAFO = Scaled factor × Animal Unit × $\left(1 \left(\frac{\text{Distance}}{\text{Max distance}}\right)^2\right)$
- The **maximum distance** is 10 kilometers.
- **Scaled factor**^[6] for animals:
 - Source: USDA report in references.
 - o Dairy (5.1), turkey (18.0), swine (4.0), sheep (1.1), beef (4.4), chicken (17.1), duck (9.8)

Spatially Adjusted Random Forest

Statistical Model

Let Y be the nitrate concentration, X be the predictive variables, s be the locations. We assume the following statistical model

- $\circ \log(Y) = f(X) + U(s) + \epsilon.$
- \circ f(X) models the effect of the predictive variables.
- \circ U(s) models the spatial dependence of nitrates.
- \circ ϵ models measurement error.

Estimation

- Estimate f(X) by **Random Forest**:
 - o Captures higher-order interactions of predictive variables.
 - o Cross-validation to select hyper-parameters and to prevent overfitting.
- Estimate U(s) by **kriging**:
 - Interpolate U(s) at unobserved locations with Gaussian process regression.

Figure: Top Left: nitrate map at 50 feet depth. Top Right: nitrate map at 100 feet depth. Bottom Left: nitrate map at 200 feet depth. Bottom Right: nitrate map at 400 feet depth.

Acknowledgement and References

- <u>References</u>: [1] Groundwater Retrieval Network (GRN). [2] Cropland Data Layer (CDL). [3]
 United States Geological Survey (USGS). [4] Soil Survey Geographic Database (SSURGO). [5]
 Wisconsin Pollutant Discharge Elimination System (WPDES). [6] Estimates of Recoverable and Non-Recoverable Manure Nutrients Based on the Census of Agriculture, USDA.
- <u>Funding</u>: Advanced statistical models for large datasets of pesticide and emerging contaminants in groundwater, Wisconsin Groundwater Coordinating Council, Department of Agriculture, Trade, and Consumer Protection.